Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1349749, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629077

RESUMO

Background: Respiratory syncytial virus (RSV) is the most common cause of viral lower respiratory tract infections (LRTIs) in young children around the world and an important cause of LRTI in the elderly. The available treatments and FDA-approved vaccines for RSV only lessen the severity of the infection and are recommended for infants and elderly people. Methods: We focused on developing a broad-spectrum vaccine that activates the immune system to directly combat RSV. The objective of this study is to identify CD4+ and CD8+ T-cell epitopes using an immunoinformatics approach to develop RSV vaccines. The efficacy of these peptides was validated through in-vitro and in-vivo studies involving healthy and diseased animal models. Results: For each major histocompatibility complex (MHC) class-I and II, we found three epitopes of RSV proteins including F, G, and SH with an antigenic score of >0.5 and a projected SVM score of <5. Experimental validation of these peptides on female BALB/c mice was conducted before and after infection with the RSV A2 line 19f. We found that the 3RVMHCI (CD8+) epitope of the F protein showed significant results of white blood cells (19.72 × 103 cells/µl), neutrophils (6.01 × 103 cells/µl), lymphocytes (12.98 × 103 cells/µl), IgG antibodies (36.9 µg/ml), IFN-γ (86.96 ng/L), and granzyme B (691.35 pg/ml) compared to control at the second booster dose of 10 µg. Similarly, 4RVMHCII (CD4+) of the F protein substantially induced white blood cells (27.08 × 103 cells/µl), neutrophils (6.58 × 103 cells/µl), lymphocytes (16.64 × 103 cells/µl), IgG antibodies (46.13 µg/ml), IFN-γ (96.45 ng/L), and granzyme B (675.09 pg/ml). In-vitro studies showed that 4RVMHCII produced a significant level of antibodies in sera on day 45 comparable to mice infected with the virus. 4RVMHCII also induced high IFN-γ and IL-2 secretions on the fourth day of the challenge compared to the preinfectional stage. Conclusion: In conclusion, epitopes of the F protein showed considerable immune response and are suitable for further validation.


Assuntos
Epitopos de Linfócito T , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Idoso , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Camundongos , Anticorpos Antivirais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Epitopos de Linfócito T/metabolismo , Granzimas , Imunoglobulina G , Peptídeos , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/metabolismo
2.
Biochem Biophys Rep ; 37: 101651, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38371523

RESUMO

Background: Melanoma is the most fatal kind of skin cancer. Among its various types, cutaneous melanoma is the most prevalent one. Melanoma cells are thought to be highly immunogenic due to the presence of distinct tumor-associated antigens (TAAs), which includes carcinoembryonic antigen (CEA), cancer/testis antigens (CTAs) and neo-antigens. The CTA family is a group of antigens that are only expressed in malignancies and testicular germ cells. Methods: We used integrative framework and systems-level analysis to predict potential vaccine candidates for cutaneous melanoma involving epitopes prediction, molecular modeling and molecular docking to cross-validate the binding affinity and interaction between potential vaccine agents and major histocompatibility molecules (MHCs) followed by molecular dynamics simulation, immune simulation and in silico cloning. Results: In this study, three cancer/testis antigens were targeted for immunotherapy of cutaneous melanoma. Among many CTAs that were studied for their expression in primary and malignant melanoma, NY-ESO-1, MAGE1 and SSX2 antigens are most prevalent in cutaneous melanoma. Cytotoxic and Helper epitopes were predicted, and the finest epitopes were shortlisted based on binding score. The vaccine construct was composed of the four epitope-rich domains of antigenic proteins, an appropriate adjuvant, His tag and linkers. This potential multi-epitope vaccine was further evaluated in terms of antigenicity, allergencity, toxicity and other physicochemical properties. Molecular interaction estimated through protein-protein docking unveiled good interactions characterized by favorable binding energies. Molecular dynamics simulation ensured the stability of docked complex and the predicted immune response through immune simulation revealed elevated levels of antibodies titer, cytokines, interleukins and immune cells (NK, DC and MA) population. Conclusion: The findings indicate that the potential vaccine candidates could be effective immunotherapeutic agents that modify the treatment strategies of cutaneous melanoma.

3.
Molecules ; 28(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838675

RESUMO

Human papilloma virus (HPV) causes cervical and many other cancers. Recent trend in vaccine design is shifted toward epitope-based developments that are more specific, safe, and easy to produce. In this study, we predicted eight immunogenic peptides of CD4+ and CD8+ T-lymphocytes (MHC class I and II as M1 and M2) including early proteins (E2 and E6), major (L1) and minor capsid protein (L2). Male and female Sprague Dawly rats in groups were immunized with each synthetic peptide. L1M1, L1M2, L2M1, and L2M2 induced significant immunogenic response compared to E2M1, E2M2, E6M1 and E6M2. We observed optimal titer of IgG antibodies (>1.25 g/L), interferon-γ (>64 ng/L), and granzyme-B (>40 pg/mL) compared to control at second booster dose (240 µg/500 µL). The induction of peptide-specific IgG antibodies in immunized rats indicates the T-cell dependent B-lymphocyte activation. A substantial CD4+ and CD8+ cell count was observed at 240 µg/500 µL. In male and female rats, CD8+ cell count for L1 and L2 peptide is 3000 and 3118, and CD4+ is 3369 and 3484 respectively compared to control. In conclusion, we demonstrated that L1M1, L1M2, L2M1, L2M2 are likely to contain potential epitopes for induction of immune responses supporting the feasibility of peptide-based vaccine development for HPV.


Assuntos
Papillomavirus Humano , Infecções por Papillomavirus , Animais , Feminino , Humanos , Masculino , Ratos , Epitopos , Epitopos de Linfócito T , Imunoglobulina G , Peptídeos
4.
Biomed Res Int ; 2022: 4792374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35686237

RESUMO

Background: Liver cancer (LC) is the most devastating disease affecting a large set of populations in the world. The mortality due to LC is escalating, indicating the lack of effective therapeutic options. Immunotherapeutic agents may play an important role against cancer cells. As immune cells, especially T lymphocytes, which are part of cancer immunology, the design of vaccine candidates for cytotoxic T lymphocytes may be an effective strategy for curing liver cancer. Results: In our study, based on an immunoinformatics approach, we predicted potential T cell epitopes of MHC class I molecules using integrated steps of data retrieval, screening of antigenic proteins, functional analysis, peptide synthesis, and experimental in vivo investigations. We predicted the binding affinity of epitopes LLECADDRADLAKY, VSEHRIQDKDGLFY, and EYILSLEELVNGMY of LC membrane-bounded extracellular proteins including butyrophilin-like protein-2 (BTNL2), glypican-3 (GPC3), and serum albumin (ALB), respectively, with MHC class I molecules (allele: HLA-A∗01:01). These T cell epitopes rely on the level of their binding energy and antigenic properties. We designed and constructed a trivalent immunogenic model by conjugating these epitopes with linkers to activate cytotoxic T cells. For validation, the nonspecific hematological assays showed a significant rise in the count of white blood cells (5 × 109/l), lymphocytes (13 × 109/l), and granulocytes (5 × 109/l) compared to the control after administration of trivalent peptides. Specific immunoassays including granzyme B and IgG ELISA exhibited the significant concentration of these effector molecules in blood serum, indicating the activity of cytotoxic T cells. Granzyme concentration increased to 1050 pg/ml at the second booster dose compared to the control (95 pg/ml), while the concentration of IgG raised to 6 g/l compared to the control (2 g/l). Conclusion: We concluded that a potential therapeutic trivalent vaccine can activate and modulate the immune system to cure liver cancer on the basis of significant outcomes of specific and nonspecific assays.


Assuntos
Vacinas Anticâncer , Neoplasias Hepáticas , Animais , Epitopos de Linfócito T , Antígenos de Histocompatibilidade Classe I , Imunoglobulina G , Neoplasias Hepáticas/terapia , Peptídeos , Ratos , Ratos Sprague-Dawley , Linfócitos T Citotóxicos , Desenvolvimento de Vacinas
5.
Front Pharmacol ; 9: 583, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922160

RESUMO

In this paper, we propose DeCoST (Drug Repurposing from Control System Theory) framework to apply control system paradigm for drug repurposing purpose. Drug repurposing has become one of the most active areas in pharmacology since the last decade. Compared to traditional drug development, drug repurposing may provide more systematic and significantly less expensive approaches in discovering new treatments for complex diseases. Although drug repurposing techniques rapidly evolve from "one: disease-gene-drug" to "multi: gene, dru" and from "lazy guilt-by-association" to "systematic model-based pattern matching," mathematical system and control paradigm has not been widely applied to model the system biology connectivity among drugs, genes, and diseases. In this paradigm, our DeCoST framework, which is among the earliest approaches in drug repurposing with control theory paradigm, applies biological and pharmaceutical knowledge to quantify rich connective data sources among drugs, genes, and diseases to construct disease-specific mathematical model. We use linear-quadratic regulator control technique to assess the therapeutic effect of a drug in disease-specific treatment. DeCoST framework could classify between FDA-approved drugs and rejected/withdrawn drug, which is the foundation to apply DeCoST in recommending potentially new treatment. Applying DeCoST in Breast Cancer and Bladder Cancer, we reprofiled 8 promising candidate drugs for Breast Cancer ER+ (Erbitux, Flutamide, etc.), 2 drugs for Breast Cancer ER- (Daunorubicin and Donepezil) and 10 drugs for Bladder Cancer repurposing (Zafirlukast, Tenofovir, etc.).

6.
Front Microbiol ; 9: 380, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593668

RESUMO

Shiga toxin (Stxs) is a family of structurally and functionally related bacterial cytotoxins produced by Shigella dysenteriae serotype 1 and shigatoxigenic group of Escherichia coli that cause shigellosis and hemorrhagic colitis, respectively. Until recently, it has been thought that Stxs only inhibits the protein synthesis and induces expression to a limited number of genes in host cells, but recent data showed that Stxs can trigger several signaling pathways in mammalian cells and activate cell cycle and apoptosis. To explore the changes in gene expression induced by Stxs that have been shown in other systems to correlate with cancer progression, we performed the simulated analysis of cDNA dataset and found differentially expressed genes (DEGs) of human THP1-monocytic cells treated with Stxs. In this study, the entire data (treated and untreated replicates) was analyzed by statistical algorithms implemented in Bioconductor packages. The output data was validated by the k-fold cross technique using generalized linear Gaussian models. A total of 50 DEGs were identified. 7 genes including TSLP, IL6, GBP1, CD274, TNFSF13B, OASL, and PNPLA3 were considerably (<0.00005) related to cancer proliferation. The functional enrichment analysis showed 6 down-regulated and 1 up-regulated genes. Among these DEGs, IL6 was associated with several cancers, especially with leukemia, lymphoma, lungs, liver and breast cancers. The predicted regulatory motifs of these genes include conserved RELA, STATI, IRFI, NF-kappaB, PEND, HLF, REL, CEBPA, DI_2, and NFKB1 transcription factor binding sites (TFBS) involved in the complex biological functions. Thus, our findings suggest that Stxs has the potential as a valuable tool for better understanding of treatment strategies for several cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA